skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Jivet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ferreira_Mello, R; Rummel, N; Jivet; I; Pishtari, G; Ruipérez_Valiente, J A (Ed.)
    Teacher reflection is essential for K-12 classrooms, including effective and personalized instruction. Multimodal Learning Analytics (MMLA), integrating data from digital and physical learning environments, could support teacher reflection. Classroom data collected from sensors and TEL environments are needed to produce such analytics. These novel data collection methods pose an open challenge of how MMLA research practices can ensure alignment with teachers’ needs and concerns. This study explores K-12 teachers’ perceptions and preferences regarding MMLA analytics and data sharing. Through a mixed-method survey, we explore teachers’ (N=100) preferences for analytics that help them reflect on their teaching practices, their favored data collection modalities, and data-sharing preferences. Results indicate that teachers were most interested in student learning analytics and their interactions and ways of motivating students. However, they were also significantly less accepting of collecting students’ audio and position data compared to such data about themselves. Finally, teachers were less willing to share data about themselves than their students. Our findings contribute ethical, practical, and pedagogical considerations of MMLA analytics for teacher reflection, informing the research practices and development of MMLA within TEL. 
    more » « less
  2. Viberg, O.; Jivet, I.; Muñoz-Merino, P.; Perifanou, M.; Papathoma, T. (Ed.)
    Past research shows that teachers benefit immensely from reflecting on their classroom practices. At the same time, adaptive and artificially intelligent (AI) tutors are shown to be highly effective for students, especially when teachers are involved in supporting students’ learning. Yet, there is little research on how to support teachers to reflect on their practices around AI tutors. We posit that analytics built on multimodal data from the classroom (e.g., teacher position, student-AI interaction) would be beneficial in providing effective scaffolding and evidence for teachers’ collaborative reflection on human-AI hybrid teaching. To better understand the design opportunities and constraints of a future tool for teacher reflection, we conducted storyboarding sessions with seven in-service teachers. Our analysis revealed that certain modalities (e.g., position v. video) might be more beneficial and less constrained than others in identifying reflection-worthy moments and trends. We discuss teachers’ needs for reflection in classrooms with AI tutors and their boundaries in using multimodal analytics. 
    more » « less